China Standard Precision Turned Parts Stainless Steel Shaped Shaft twin screw extruder shaft

Product Description

  • It Is Processed By The Star Dual-Spindle CNC Centering Machine. 90 °Tungsten-Carbide Center Drill For Centering, Tungsten-Carbide Bit To Drill, Roughing Cutter With 55 °R0.4 Corner For Processing Outer Diameter, Rear Sweep Insert With R0.4 Corner For Roughing Outer Diameter, Cylindrical Cutter With 55°R0.2 Corner For Finishing Outer Diameter, Rear Sweep Insert With R0.2 Corner For Finishing Small Outer Diameter, Thread Cutter For Processing Thread, Cylindrical Cutter With 55°R0.2 Corner For Deburrring, Turning Tool With R0.2 Corner For Deburring. We Remove The Burr With The Thread Cutter, Process The Inner Hole With The Reamer, For The Secondary Shaft, We Finish The End Face With The 55° R0.2 Corner Cylindrical Cutter.

    Bore Accuracy ±5μm, To Ensure The Tolerance Of The Bore Can Be Stable Production Of Large Quantities, Similar Models Are Also Available In Brass. Worm Drive Is Composed Of Worm And Worm Gear, Which Is Used To Transmit The Motion And Power Between Staggered Shafts. Generally, The Staggered Angle Of The Two Shafts Is 90 °. In General Worm Drive, The Worm Is The Driving Part. From The Appearance, The Worm Is Similar To The Bolt, While The Worm Gear Is Very Similar To The Helical Cylindrical Gear. When Working, The Worm Gear Teeth Slide And Roll Along The Spiral Surface Of The Worm. In Order To Improve The Contact Condition Of The Gear Teeth, The Worm Gear Is Made Into An Arc Shape Along The Tooth Width Direction, So That The Worm Part Is Wrapped. In This Way, The Worm Gear Is In Line Contact Rather Than Point Contact And Folded.

    Material:  45# Size:  OD 15mm*Length 58mm
    Weight:  9g Color:  Natural/Anti-Rust Treatment

Quotation According To customer’s Drawings or Samples. IncludesSize, Material, Thickness, Processing Content And Required Technology, etc.)
Tolerance   +/-0.005 – 0.01mm (Customizable) according to customer’s requirement.
Surface Roughness Ra0.2 – Ra3.2 (Customizable) according to customer’s requirement
Materials Available Aluminum, Copper, Brass, Stainless Steel, Titanium, Iron, Plastic, Acrylic, PE, PVC, ABS, POM, PTFE etc.
Surface Treatment Polishing, Surface Chamfering, Hardening and Tempering, Nickel plating, Chrome plating, zinc plating, Laser engraving, Sandblasting, Passivating, Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, etc.
Processing CNC Turning, Milling, Drilling and Tapping, Surface Treatment, Laser Cutting, Stamping, Die Casting, Injection Molding,Hot/Cold forging, Heat treatment,  etc.
Testing Equipment Coordinate Measuring Machine (CMM) / Vernier Caliper/ / Automatic Height Gauge /Hardness Tester /Surface Roughness Teste/Run-out Instrument/Optical Projector, Micrometer/ Salt spray testing machine
Drawing Formats PRO/E, Auto CAD, CHINAMFG Works , UG, CAD / CAM / CAE, PDF
Our Advantages 1.) 24 hours online service & quickly quote and delivery.
2.) 100% quality inspection (with Quality Inspection Report) before delivery. All our products are manufactured under ISO 9001:2015.
3.) A strong, professional and reliable technical team with 20+ years of manufacturing experience.
4.) We have stable supply chain partners, including raw material suppliers, bearing suppliers, forging plants, surface treatment plants, etc.
5.) We can provide customized assembly services for those customers who have assembly needs.
Available Material
Stainless Steel    SS201,SS301, SS303, SS304, SS316, SS416, etc.
Steel    mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#, etc.
Brass    HPb63, HPb62, HPb61, HPb59, H59, H62, H68, H80, etc.
Copper     C11000, C12000,C12000, C36000 etc.
Aluminum     A380, AL2571, AL6061, Al6063, AL6082, AL7075, AL5052, etc.
Iron     A36, 45#, 1213, 12L14, 1215 etc.
Plastic     ABS, PC, PE, POM, Delrin, Nylon, PP, PEI, Peek etc.
Others     Various types of Titanium alloy, Rubber, Bronze, etc.
Available Surface Treatment
Stainless Steel Polishing, Passivating, Sandblasting, Laser engraving, etc.
Steel Zinc plating, Oxide black, Nickel plating, Chrome plating, Carburized, Powder Coated, etc.
Aluminum parts Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, Polishing, etc.
Plastic Plating gold(ABS), Painting, Brushing(Acylic), Laser engraving, etc.

Our production: 

 

Inspection toolings

 

Package:

 

 

Shipment:

 

 

 

Type: Fittings
Raw Material: Carbon Steel
Tolerance: +/-0.5
One-Touch Screw: Stainless Steel Thumb Screw Knurled
Brass: Brass Cable Accessories
Transport Package: Cartons
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

screw jack

How do screw jacks ensure controlled and synchronized movement in multi-jack systems?

Screw jacks are capable of ensuring controlled and synchronized movement in multi-jack systems through various mechanisms and techniques. These systems are commonly used in applications where multiple screw jacks need to work together to lift or position a load. Here’s how screw jacks achieve controlled and synchronized movement in multi-jack systems:

  • Mechanical Synchronization: Screw jacks can be mechanically linked in a multi-jack system to ensure synchronized movement. This can be achieved through the use of rigid couplings, connecting rods, or gear mechanisms that interconnect the input shafts of individual screw jacks. As a result, when one screw jack is operated to lift or lower the load, the mechanical linkage transfers the motion to the other screw jacks, causing them to move in sync. This ensures that all jacks contribute proportionally to the load and maintain a consistent lifting height.
  • Electrical Synchronization: In addition to mechanical synchronization, screw jacks can also be electrically synchronized in multi-jack systems. This is typically achieved through the use of motorized screw jacks controlled by a centralized control system. Each motorized screw jack is equipped with position sensors or encoders that provide feedback on their current position. The control system receives this feedback and adjusts the motor speed and direction for each screw jack to ensure synchronized movement. Electrical synchronization enables precise control and allows for adjustments to be made dynamically, compensating for any variations in load distribution or environmental conditions.
  • Load Sharing Mechanisms: In multi-jack systems, load sharing mechanisms can be employed to distribute the weight evenly among the screw jacks. Load sharing mechanisms can include load sensors or load cells that measure the individual loads on each jack. The control system then adjusts the lifting force applied by each screw jack to ensure equal distribution of the load. This prevents overloading of any individual jack and promotes balanced movement in the system.
  • Position Feedback and Control: Screw jacks in multi-jack systems can be equipped with position feedback devices, such as linear encoders or limit switches, that provide information on the position of the load. This feedback is used by the control system to precisely control the movement of the screw jacks, ensuring that they reach and maintain the desired positions. By continuously monitoring the position feedback, the control system can make adjustments to keep the jacks synchronized and maintain the desired level of control.
  • Control System Integration: A centralized control system can be used to integrate and coordinate the operation of multiple screw jacks in a multi-jack system. This control system can utilize programmable logic controllers (PLCs) or computer numerical control (CNC) systems to manage the movement, synchronization, and safety aspects of the screw jacks. The control system enables precise control, real-time monitoring, and the implementation of safety features, enhancing the overall performance and reliability of the multi-jack system.

By employing these mechanisms and techniques, screw jacks ensure controlled and synchronized movement in multi-jack systems. These systems find applications in various industries, such as heavy lifting, material handling, and industrial automation, where precise positioning and synchronized operation are critical requirements.

screw jack

What safety precautions should be followed when operating screw jacks?

Operating screw jacks safely is essential to prevent accidents, injuries, and damage to equipment. Here are some important safety precautions that should be followed when operating screw jacks:

  • Read and Understand the Manual: Before operating a screw jack, carefully read and understand the manufacturer’s instruction manual. The manual provides important safety information, operating procedures, and maintenance guidelines specific to the screw jack model. Following the manufacturer’s instructions is crucial for safe and proper operation.
  • Inspect the Screw Jack: Prior to use, inspect the screw jack for any signs of damage, wear, or loose components. Check for proper lubrication and ensure that all connections and fasteners are secure. If any issues are identified, do not operate the screw jack and address the problems through maintenance or contact the manufacturer for assistance.
  • Use Appropriate Personal Protective Equipment (PPE): When operating a screw jack, wear the necessary personal protective equipment (PPE) as recommended by the manufacturer and applicable safety regulations. This may include safety glasses, gloves, steel-toed shoes, or other protective gear depending on the specific application and work environment.
  • Ensure Stable Support: Place the screw jack on a stable and level surface capable of supporting the load. Ensure that the supporting structure or surface is capable of withstanding the forces generated during the lifting or lowering operation. Use appropriate blocking or shoring if additional support is required.
  • Do Not Exceed Load Capacity: Never exceed the load capacity specified by the manufacturer for the screw jack. Overloading the screw jack can lead to instability, component failure, or other safety hazards. It is important to know the weight of the load being lifted or supported and select a screw jack with an appropriate load rating.
  • Operate Smoothly and Carefully: Operate the screw jack smoothly and carefully, avoiding sudden or jerky movements. Use the operating handle or control mechanism provided by the manufacturer and follow the recommended operating procedures. Maintain control over the lifting or lowering process, and ensure that personnel or body parts are clear of pinch points or potential hazards.
  • Do Not Use as a Permanent Support: Screw jacks are not designed to be used as permanent supports or to sustain constant loads over extended periods. They are intended for intermittent or temporary use. Avoid using screw jacks as permanent supports or in situations where prolonged load-bearing is required.
  • Properly Store and Maintain: After use, properly store the screw jack in a clean and dry environment. Follow the manufacturer’s maintenance guidelines for lubrication, inspection, and periodic maintenance. Regularly check the screw jack for any signs of wear, damage, or deterioration, and address any issues promptly.
  • Training and Competence: Ensure that operators are adequately trained and competent in the safe operation of screw jacks. Training should cover proper use, maintenance, and understanding of the associated hazards and safety precautions.

Following these safety precautions when operating screw jacks promotes a safe working environment and helps prevent accidents or injuries. It is important to prioritize safety and adhere to the manufacturer’s guidelines and industry best practices.

screw jack

Which industries and sectors commonly rely on screw jacks for their operations?

Screw jacks find applications in various industries and sectors where lifting heavy loads, adjusting height, or precise positioning is required. Here are some of the industries and sectors that commonly rely on screw jacks for their operations:

  • Manufacturing: Screw jacks are extensively used in manufacturing industries for tasks such as lifting and positioning heavy equipment, adjusting assembly line heights, and aligning components during production processes.
  • Construction: The construction industry utilizes screw jacks for tasks like lifting and stabilizing structural elements during building construction, adjusting formwork and scaffolding heights, and positioning heavy machinery or materials.
  • Automotive: In the automotive sector, screw jacks are employed for lifting vehicles during maintenance and repairs, adjusting conveyor heights in assembly lines, and positioning components during manufacturing processes.
  • Transportation and Logistics: Screw jacks are used in transportation and logistics for tasks such as adjusting loading dock heights, raising or lowering platforms on trucks or trailers, and positioning cargo handling equipment.
  • Entertainment and Events: The entertainment and events industry relies on screw jacks for stage setups, lifting and adjusting lighting equipment, raising or lowering platforms for performers, and creating dynamic stage effects.
  • Aerospace and Defense: Screw jacks are utilized in the aerospace and defense sectors for applications such as adjusting heights of launch platforms, positioning aircraft components during assembly, and operating heavy-duty doors or hatches.
  • Material Handling and Warehousing: Screw jacks are found in material handling and warehousing operations for tasks like adjusting conveyor heights, lifting heavy pallets or containers, and positioning racks or shelves.
  • Mining and Heavy Machinery: The mining industry and sectors involving heavy machinery utilize screw jacks for lifting and positioning equipment, adjusting conveyor heights, and supporting heavy loads in various mining operations.
  • Energy and Utilities: Screw jacks are employed in energy and utility sectors for tasks such as adjusting heights of solar panels or wind turbines, raising or lowering equipment in power plants, and positioning components in utility infrastructure.
  • Medical and Rehabilitation: In the medical and rehabilitation fields, screw jacks are used for height adjustment of medical beds, positioning of imaging equipment, and providing adjustable support systems for patients.

This list is not exhaustive, and screw jacks may find applications in other industries and sectors beyond those mentioned. The versatility, load capacity, and precise control offered by screw jacks make them valuable tools in a wide range of operations requiring lifting, adjusting, or positioning heavy loads.

China Standard Precision Turned Parts Stainless Steel Shaped Shaft   twin screw extruder shaftChina Standard Precision Turned Parts Stainless Steel Shaped Shaft   twin screw extruder shaft
editor by CX 2023-11-22

Leave a Reply

Your email address will not be published. Required fields are marked *